La nuova termodinamica: come la fisica quantistica sta cambiando le regole

Nuovi esperimenti stanno verificando i limiti della termodinamica nel mondo quantistico, dove le leggi classiche, anche se non possono essere infrante, devono essere modificate per rendere conto dei fenomeni che si verificano in questo diverso dominio. Da questo nuovo ambito di ricerca, la termodinamica quantistica, potrebbero emergere risultati in grado di dare nuovo impulso allo sviluppo tecnologico

 

Un fisico dovrebbe aver perso la ragione per tentare di violare le leggi della termodinamica. Eppure è possibile modificarle. In un laboratorio all’Università di Oxford, in Gran Bretagna, un gruppo di fisici quantistici sta cercando di farlo con un piccolo campione di diamante sintetico.

All’inizio, il diamante è appena visibile, posto all’interno di una caotico groviglio di fibre ottiche e specchi. Ma quando si accende un laser verde, i difetti del diamante sono illuminati e il cristallo inizia a brillare. In quella luce, i ricercatori hanno trovato le prove preliminari di un effetto teorizzato solo pochi anni fa: un boost quantistico che amplificherebbe la potenza del segnale in uscita dal diamante oltre il limite posto dalla termodinamica classica.

Se i risultati fossero confermati, sarebbe una vera manna per la termodinamica quantistica, un campo di studi relativamente nuovo che mira a scoprire le leggi che regolano i flussi di calore ed energia su scala atomica.

La nuova termodinamica: come la fisica quantistica sta cambiando le regole
L’apparato sperimentale del gruppo di Oxford (Jonas Becker)

 

C’è ragione di sospettare che nel dominio quantistico le leggi della termodinamica, basate sul comportamento di un gran numero di particelle, siano diverse. Negli ultimi cinque anni, intorno a questa idea è cresciuta una comunità quanto-termodinamica. Quello che una volta era il dominio di una manciata di teorici, ora include alcune centinaia di fisici teorici e sperimentali in tutto il mondo. “Questo ambito sta progredendo così in fretta che riesco a malapena a stare al passo”, dice Ronnie Kosloff, della Hebrew University di Gerusalemme, un pioniere di questi studi.

Alcuni dei fisici che si occupano termodinamica quantistica sperano di scoprire un comportamento al di fuori dell’ambito della termodinamica convenzionale che possa essere applicato a scopi pratici, tra cui il miglioramento delle tecniche di refrigerazione usate nei laboratori, la realizzazione di batterie con prestazioni migliorate e il raffinamento della tecnologia per il calcolo quantistico.

Ma questo campo di studi è ancora agli inizi. Esperimenti come quello di Oxford hanno appena cominciato a mettere alla prova le previsioni teoriche. E i fisici che non ne fanno parte stanno osservando attentamente tali prove per capire se mostrano la possibilità di applicazioni utili previste dai teorici. “La termodinamica quantistica è evidentemente un tema ‘caldo’, se mi perdonate il gioco di parole”, afferma Ronald Walsworth, dell’Università di Harvard, che è specializzato nello sviluppo di strumenti di precisione a scala atomica. “Ma per chi guarda dall’esterno, la domanda è se può davvero dare un impulso allo sviluppo delle tecnologie”.

Infrangere la legge
Le leggi della termodinamica classica sono state sviluppate nel XIX secolo. Sono il frutto dello sforzo di comprendere i motori a vapore e altri sistemi macroscopici. In natura, le quantità termodinamiche come temperatura e calore sono statistiche e sono definite in riferimento al movimento medio di grandi insiemi di particelle. Ma negli anni ottanta, Kosloff iniziò a chiedersi se questo modello avesse ancora senso per sistemi molto più piccoli. All’epoca, non era una linea di ricerca popolare, spiega, perché le domande che poneva erano in gran parte astratte, con poche speranze di una connessione con gli esperimenti. “Il campo si è sviluppato molto lentamente”, dice. “Sono rimasto da solo per anni”.

Le cose cambiarono drasticamente circa un decennio fa, quando le questioni sui limiti della miniaturizzazione tecnologica diventarono più pressanti e le tecniche sperimentali progredirono. Si fece una quantità enorme di tentativi di calcolare in che modo si potessero combinare la teoria termodinamica e la teoria quantistica. Ma le proposte che emersero crearono più confusione che chiarezza, dice Kosloff.

Alcuni sostenevano che i dispositivi quantistici avrebbero potuto violare impunemente i vincoli termodinamici classici e agire così come macchine a moto perpetuo, in grado di compiere un lavoro senza bisogno di alcun input energetico. Altri, suggerendo che le leggi della termodinamica dovessero valere senza modifiche a scale molto piccole, erano altrettanto perplessi. “In un certo senso, puoi usare le stesse equazioni per analizzare le prestazioni di un motore a singolo atomo e del motore della tua auto”, dice Kosloff. “Ma anche questo è sorprendente: sicuramente quando si va sempre più nel mondo microscopico si arriva a un limite quantistico”. Nella termodinamica classica, una singola particella non ha una temperatura. Così via via che il sistema che produce lavoro e il suo ambiente si avvicinano a quel limite, diventa sempre più assurdo immaginare che vengano rispettate le leggi termodinamiche standard, afferma Tobias Schaetz, fisico quantistico dell’Università di Friburgo.

Inizialmente, la preponderanza di affermazioni e previsioni teoriche in conflitto ha minato la credibilità di questo ambito di ricerca. “Sono stato molto critico sul settore, perché c’è tanta teoria e non abbastanza esperimenti”, dice Peter Hänggi, fisico quantistico dell’Università tedesca di Augsburg. Ma la comunità sta iniziando a concentrarsi sulle domande fondamentali, nel tentativo di aprirsi un varco nel caos. Un obiettivo è stato quello di utilizzare gli esperimenti per scoprire il punto in cui le leggi classiche della termodinamica non prevedono più perfettamente il comportamento termico dei sistemi quantistici.

La nuova termodinamica: come la fisica quantistica sta cambiando le regole
James Clerk Maxwell (1831-1879) padre fondatore della moderna teoria dell’elettromagnetismo. Il suo esperimento mentale del “diavoletto” pone un’importante questione termodinamica che è stata risolta solo di recente (Wikimedia Commons)

Gli esperimenti stanno cominciando a individuare il confine tra mondo classico e mondo quantistico. Lo scorso anno, per esempio, Schaetz e i suoi colleghi hanno dimostrato che, in determinate condizioni, stringhe di cinque o meno ioni di magnesio in un cristallo non superano quel limite, ma rimangono in equilibrio termico con il loro ambiente, così come fanno i sistemi più grandi.

Nel loro test, ogni ione era inizialmente in uno stato ad alta energia e il suo spin oscillava tra due stati corrispondenti alla direzione del suo magnetismo: “su” e “giù”. La termodinamica standard prevede che tali oscillazioni di spin dovrebbero diminuire quando gli ioni si raffreddano interagendo con gli altri atomi nel cristallo attorno a loro, proprio come il caffè caldo si raffredda quando le sue molecole si scontrano con le molecole dell’aria circostante più fredda.

Tali collisioni trasferiscono energia dalle molecole di caffè alle molecole d’aria. Un meccanismo di raffreddamento simile entra in gioco nel cristallo, dove le vibrazioni quantizzate del reticolo, chiamate fononi, estraggono calore dagli spin oscillanti. Schaetz e i suoi colleghi hanno scoperto che i loro piccoli sistemi a ioni smettevano di oscillare, il che indicava che si erano raffreddati. Ma dopo alcuni millisecondi, gli ioni hanno ricominciato a oscillare vigorosamente. Questa ripresa di attività ha un’origine quantistica, dice Schaetz. Piuttosto che dissiparsi completamente, i fononi rimbalzavano sui bordi del cristallo e tornavano indietro, in fase, verso i loro ioni di origine, ripristinando le oscillazioni di spin originali.

Schaetz dice che il suo esperimento è un segnale per gli ingegneri che stanno tentando di ridurre le dimensioni dell’elettronica attuale. “Puoi avere un cavo che ha un diametro di soli 10 o 15 atomi e pensare che abbia estratto calore dal chip, ma poi improvvisamente si verifica questo fenomeno quantistico”, spiega Schaetz. “È molto inquietante”.

I fononi di rimbalzo potrebbero creare problemi in alcune applicazioni, ma altri fenomeni quantistici potrebbero rivelarsi utili. Gli sforzi per identificare tali fenomeni erano stati bloccati dalla difficoltà di definire grandezze fondamentali, come il calore e la temperatura, nei sistemi quantistici. Ma la soluzione di un famoso esperimento mentale, elaborato 150 anni fa dal fisico scozzese James Clerk Maxwell, ha fornito un indizio su che direzione prendere, definendo un interessante legame tra informazione ed energia.

Maxwell immaginò un’entità in grado di scegliere tra molecole lente e molecole veloci, creando una differenza di temperatura tra due camere semplicemente aprendo e chiudendo una porta tra di esse. Questo “diavoletto”, come è stato chiamato, genera quindi una camera calda e una camera fredda che possono essere sfruttate per produrre energia utile. Il problema è che, scegliendo le particelle in questo modo, il diavoletto riduce l’entropia del sistema, una misura del disordine delle disposizioni delle particelle, senza aver fatto alcun lavoro sulle particelle stesse. Questo sembra violare la seconda legge della termodinamica.

Ma i fisici finalmente hanno capito che il diavoletto avrebbe pagato un “prezzo termodinamico” per elaborare le informazioni sulle velocità delle molecole. Avrebbe dovuto memorizzare, cancellare e rimemorizzare quelle informazioni nel suo cervello. Quel processo consuma energia e crea un aumento complessivo dell’entropia. Una volta si pensava che l’informazione fosse immateriale, “ma il diavoletto di Maxwell dimostra che essa può avere conseguenze fisiche oggettive”, afferma il fisico quantistico Arnau Riera, dell’Istituto di Scienze Fotoniche di Barcellona.

Trovare il limite
Ispirandosi all’idea che l’informazione sia una quantità fisica e che sia strettamente legata alla termodinamica, i ricercatori hanno tentato di ricostruire le leggi della termodinamica in modo che lavorino nel regime quantistico.

Le macchine a moto perpetuo possono essere impossibili. Ma inizialmente si sperava che i limiti prescritti dalla termodinamica quantistica potessero essere meno stringenti di quelli che valgono nel dominio classico. “Questo è stato il filo di pensiero che abbiamo mutuato dal calcolo quantistico: gli effetti quantistici consentono di superare i limiti classici”, afferma Raam Uzdin, fisico quantistico del Technion–Israel Institute of Technology di Haifa.

Purtroppo non è così, dice Uzdin. Analisi recenti indicano che le versioni quantistiche della seconda legge, che governa l’efficienza, e della terza legge, che vieta ai sistemi di raggiungere lo zero assoluto di temperatura, mantengono vincoli simili, e in alcuni casi più stringenti, delle loro controparti classiche.

Alcune differenze sono dovute al fatto che la quantità termodinamica macroscopica “energia libera”, cioè l’energia che un sistema ha a disposizione per funzionare, non ha una sola controparte alle microscale, ma ne ha molte, dice Jonathan Oppenheim, fisico quantistico dello University College di Londra.

Classicamente, l’energia libera viene calcolata postulando che tutti gli stati del sistema, determinati dalla disposizione delle particelle in corrispondenza di una certa energia, siano altrettanto probabili. Ma questa ipotesi non vale alle piccole scale, dice Oppenheim; alcuni stati potrebbero essere molto più probabili di altri. Per tenere conto di ciò, è necessario definire ulteriori energie libere per descrivere in modo accurato il sistema e la sua evoluzione. Oppenheim e i suoi colleghi ipotizzano che esistano diverse versioni della seconda legge per ogni tipo di energia libera e che i dispositivi quantistici debbano obbedire a tutte. “Dal momento che la seconda legge ti dice che cosa non è consentito fare, in qualche modo, sembra che avere più leggi alle microscale sia peggio”, dice Oppenheim.

Second law of thermodynamics, equation. This law states that the entropy (dS) of an isolated system not in equilibrium will tend to increase over time…
La seconda legge della termodinamica: afferma che l’entropia di un sistema isolato (S) non può mai diminuire ma solo aumentare o al massimo rimanere costante (Science Photo Library/AGF)

Gran parte del lavoro per calcolare le leggi equivalenti della seconda e della terza legge rimane, per ora, teorico. Ma i proponenti sostengono che possa aiutare a capire in che modo i limiti termodinamici siano fisicamente applicati alle piccole scale. Per esempio, un’analisi teorica condotta da una coppia di fisici quantistici argentini ha mostrato che quando un frigorifero quantistico si avvicina allo zero assoluto, nelle vicinanze del dispositivo appaiono spontaneamente dei fotoni. “Ciò scarica energia nell’ambiente circostante, provocando un effetto di riscaldamento che contrasta il raffreddamento e impedisce di raggiungere lo zero assoluto”, spiega Nahuel Freitas della Ciudad University di Buenos Aires, membro del gruppo.

La teoria ha anche rivelato un potenziale spazio di manovra. Con un’analisi teorica che esaminava il flusso di informazioni tra camere calde e fredde o “bagni” di particelle, un gruppo di Barcellona, che includeva Riera e il fisico quantistico Manabendra Nath Bera, ha scoperto uno strano scenario, in cui il bagno caldo sembrava diventare spontaneamente ancora più caldo, e il bagno freddo ancora più freddo.

“In un primo momento è sembrata una follia, come se si potesse violare la termodinamica”, dice Bera. Ma i ricercatori  hanno capito presto di aver trascurato l’entanglement quantistico: le particelle nei bagni possono diventare entangled. In teoria, produrre e rompere queste correlazioni offre un modo per immagazzinare e rilasciare energia. Una volta che questa risorsa quantistica è stata tenuta in conto, le leggi della termodinamica hanno ripreso a valere.

Alcuni gruppi indipendenti hanno proposto di usare questo entanglement per immagazzinare energia in una “batteria quantistica” e un gruppo dell’Istituto Italiano di Tecnologia di Genova sta tentando di confermare le previsioni del gruppo di Barcellona con batterie costituite da bit quantistici, o “qubit”, superconduttori. In linea di principio, tali batterie quantistiche potrebbero caricarsi in modo molto più veloce dei loro corrispettivi classici. “Non sarai in grado di estrarre e conservare più energia di quanto consentito dal limite classico”, dice Riera. “Ma potresti essere in grado di accelerare le cose”.

Alcuni ricercatori stanno cercando modi più semplici per manipolare qubit per le applicazioni di calcolo quantistico. Il fisico quantistico Nayeli Azucena Rodríguez Briones dell’Università di Waterloo, in Canada, e i suoi colleghi hanno definito un’operazione che potrebbe migliorare il raffreddamento necessario per le operazioni di calcolo quantistico manipolando coppie di livelli di energia dei qubit. Attualmente hanno in programma di verificare questa idea in laboratorio usando qubit superconduttori.

Una piccola scintilla
L’idea che gli effetti quantistici possano essere sfruttati per migliorare le prestazioni termodinamiche ha ispirato anche l’esperimento col diamante in corso a Oxford, che è stato proposto per la prima volta da Kosloff, Uzdin e Amikam Levy della Hebrew University.

I difetti creati dagli atomi di azoto diffusi attraverso il diamante possono servire come motore, una macchina che esegue un’operazione dopo essere stata messa a contatto con un primo serbatoio caldo (in questo caso un laser) e poi con uno freddo. Ma Kosloff e colleghi si aspettano che un tale motore possa operare anche in una modalità avanzata, sfruttando un effetto quantistico che consente ad alcuni degli elettroni di esistere in due stati di energia contemporaneamente. Mantenere queste sovrapposizioni pulsando la luce laser invece di usare un fascio continuo dovrebbe consentire al cristallo di emettere fotoni a microonde più rapidamente di quanto non avverrebbe in altro modo (si veda l’infografica di “Nature”).

La scorsa settimana, il gruppo di Oxford ha pubblicato un’analisi preliminare che dimostra il previsto boost quantistico. L’articolo è ancora in fase di revisione, ma se il lavoro dovesse reggere “sarebbe un progresso notevole”, dice Janet Anders, un fisico quantistico dell’Università di Exeter, nel Regno Unito. Ma, aggiunge, non è ancora chiaro esattamente cosa rende possibile questo effetto. “Sembra che sia un combustibile magico: non agisce tanto aggiungendo energia, ma consentendo al motore di estrarre energia più velocemente”, dice Anders. “I fisici teorici dovranno esaminarlo per capire come funziona”.

Concentrarsi sugli esperimenti è un passo importante nella giusta direzione per rivitalizzare il settore, dice Hänggi. Ma secondo lui gli esperimenti non sono ancora abbastanza audaci da fornire risultati veramente innovativi. C’è anche il problema che i sistemi quantistici possono essere irrimediabilmente disturbati dalla misurazione e dall’interazione con l’ambiente. Di rado però questi effetti sono considerati a sufficienza nelle proposte teoriche di nuovi esperimenti, afferma. “E’ difficile da calcolare ed è molto più difficile da implementare in un esperimento”, dice.

Anche Ian Walmsley, capo del laboratorio di Oxford dove è stato condotto l’esperimento con i diamanti, è cauto sul futuro del settore. Anche se lui e altri sperimentatori sono stati attirati dalla ricerca sulla termodinamica quantistica negli ultimi anni, afferma che il loro interesse è stato in gran parte “opportunistico”. Hanno scoperto la possibilità di condurre esperimenti relativamente rapidi e facili sfruttando gli apparati già pronti per altri usi; per esempio, l’apparato per il difetto del diamante era già ampiamente studiato per applicazioni di calcolo quantico e di sensori. Oggi, la termodinamica quantistica sta facendo scintille, dice Walmsley. “Ma dovremo attendere per capire se continuerà così o se sarà un fuoco di paglia”.

(L’originale di questo articolo è stato pubblicato su Nature il 1° novembre 2017. Traduzione ed editing a cura di Le Scienze. Riproduzione autorizzata, tutti i diritti riservati.)

 

Fonte http://www.lescienze.it/news/2017/11/04/news/nuova_termodinamica_meccanica_quantistica-3741686/

Pubblicato da Tanja

Io sono.... Chi sono io? La domanda eterna di ogni persona da sempre. Questo blog è il risultato, lo specchio, il modo, e la strada che sto precorrendo nella mia personale ricerca di risposte a questa domanda In questo blog troverete tutto quello cosa ho scoperto fino adesso e cosa ancora sto scoprendo. Io credo che questa ricerca non finirà mai. Credo che siamo esseri multidimensionali creati da perfezione d’amore incondizionato e universale e come tali anche noi siamo perfetti esseri d’amore con i poteri divini di creazione. Siamo esseri divini che possiedono stesse caratteristiche della nostra fonte. Noi siamo l’amore, la sapienza, la giustizia e la potenza. Una volta ho scritto: Fu una volta un popolo divino........ che dimenticò di esserlo.. dimenticò realtà parallele frequenze divine connessione divina libera connesione divina. Un giorno pieno di luce hanno cominciato...... In che modo continua la favola e in che modo finirà dipende da tutti noi. Adesso dobbiamo solo ricordarci di essere Dei. Per questa ragione ho battezzato il mio blog con questo nome. Mi sento come una Dea che stava dormendo per tanto tempo ed adesso si sta risvegliando. Forse sono ancora un po’ assonnacchiata ma i miei sensi si stano risvegliando sempre di più per poter vedere differenza tra il vecchio mondo e il nuovo mondo che sta nascendo. Quel nuovo mondo, quella nuova realtà è creata nella condivisione. Non poteva essere diversamente perché siamo tutti collegati. Tutti noi siamo un unico organismo vivente che solo collaborando può vivere e crescere. Sono certa che tutti noi, i Dei risvegliati, stiamo creando qualcosa che ancora non esisteva nel multiverso. Sono certa che siamo capaci di farlo unendoci. Questo blog è un mio contributo al condivisione in creazione. Che l’amore ci guida. Tanja

5 Risposte a “La nuova termodinamica: come la fisica quantistica sta cambiando le regole”

  1. Ciao Tanja,
    Domandina al volto,secondo il tuo sentire in questo caso esiste una controparte spirituale, di questa scoperta scientifica?

    PS: ľaltro articolo ha dell incredibile,un sacco di carne al fuoco da metabolizzare percezioni da rielaborare e domande che necessitano risposta. Grazie come sempre per la tua presenza. Espavo <3

    1. Luca, non esiste separazione tra scienza e spiritualità, come non esiste nessuna 1 controparte. Esiste campo di INFINITE POSSIBILITA’, infinite contropartidi questa stessa ricerca. questa è solo 1 tra le infinite varianti di stessa cosa. Noi abbiamo percepito questa ed essa ci indica il nostro momentaneo stato di essere. Non so se sono stata abastanza chiara. Sono consapevole che il concetto di linee temporali parallele ed infinite non è facile da comprendere con la vecchia mentelogica.

  2. Molto Chiara..grazie 🙂
    Quello che mi incuriosisce è il nostro momentaneo stato ďessere rispetto alla nuova termodinamica. Il che cosa sta cambiando in questo momento in noi, che la termodinamica sta scientificamente dimostrandolo all esterno..
    Ps: le infinite linee temporali sono realtà tanto affascinanti,quanto concetti difficili da assimilare con questa mente in transizione,ancora molto logica si ;))

Lascia un commento

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.